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Increasing energy expenditure is an attractive approach
to fighting the worldwide epidemic in obesity and type 2
diabetes. Exercise is an important component of good
health and represents the first line of therapy for
humans with a variety of metabolic disorders: obesity,
diabetes, and nonalcoholic hepatic steatosis. Recent data
has shown that exercise, besides using calories to do
physical work, also causes an increase in energy expen-
diture through augmentation in brown fat and the
browning of white fat (Fig. 1) (1,2). Indeed, these effects
on brown fat could represent part of the longer-lasting
benefits of exercise.

That brown fat, in all of its dimensions, can improve
type 2 diabetes and metabolic health seems to be settled
science, at least in experimental animals (3). These cells
express UCP1 and have a high mitochondrial content,
thereby dissipating chemical energy in the form of heat.
In fact, the improvements seen in glucose tolerance ob-
served with “browning” of white fat and the formation of
“beige” or “brite” cells might be greater than expected
solely from their effects on body weight and adiposity
(4). The confirmed presence of UCP1+ brown fat in
humans has added to the interest in finding methods and
molecules that can augment energy expenditure through
browning of beige fat cells (5–7). Several polypeptides,
including FGF21, BMP7/8b, BNP/ANP, and orexin, all
have interesting browning effects (8–12). Irisin was of
interest because it is induced during exercise in rodents
and is at least partially responsible for the browning
response observed in white fat during chronic exercise
(2). The parent polypeptide, FNDC5, is synthesized as
a type 1 membrane protein and is then cleaved and shed
into the circulation as a highly glycosylated polypeptide
of roughly 12kDa. Irisin appears to act preferentially on
the browning of white fat deposits when elevated in the
blood of obese mice via viral vectors. This correlates with
improvements in glucose tolerance in obese mice. Re-
garding human irisin, it is clear that FNDC5 mRNA is
increased in skeletal muscle in some exercise paradigms
but not others (2,13,14). Interestingly, two articles re-
port that human patients with diabetes are deficient in
irisin compared with normal counterparts (15,16).

Because the human irisin mRNA has an AUA start codon
in the precise location where other species have a classi-
cal ATG start codon, the possibility that the human gene
might not encode a protein has been raised (17), though
the large number of studies measuring human irisin in
blood with different antibodies and methods would seem
to close this issue (15,16,18–22).

In this issue, Zhang et al. (23) addressed the signal
transduction pathways by which irisin drives the
browning of white fat cells. This article used the mam-
malian irisin produced in yeast cells and found that it is
both heavily glycosylated and biologically active when
placed on either 3T3-L1 cells or primary cultures from
the rat inguinal depot. The effects on the 3T3-L1 cultures
are especially impressive because these cells are generally
viewed as very “white,” or not prone to the induction of
mRNA encoding UCP1 and other thermogenic genes. The
article shows rather convincingly that these browning
effects depend on the activation of extracellular signal–
related kinase (ERK) and p38 protein kinase signaling
cascades. While both of these kinases have been impli-
cated previously in the thermogenic actions of other
agents on brown fat, including b-adrenergic agonists and
FGF21, the role in irisin action was not known
(11,24,25). The signal transduction through ERK and
p38 occurs within 20 min after irisin is added to the cell
culture. The swift response and the evidence that irisin
directly binds to the cell membrane alludes to a yet-to-be-
identified irisin receptor present in both primary inguinal
cells and 3T3-L1 cells. Further studies will illustrate how
the expression and activation of this receptor is regulated
under physiological (exercise) and/or pathological (met-
abolic diseases) conditions. Of importance, Zhang et al.
further demonstrate that mutation of either glycosyla-
tion site of irisin compromised its activity; whether this
is due to a strict requirement of these modifications for
(putative) receptor binding or whether they influence
protein folding/solubility was not addressed.

Last and of import, Zhang et al. (23) gave irisin by in-
jection daily for 2 weeks and saw strong changes in body
weight, browning of the adipose tissues, and improve-
ments in glucose tolerance. While these data are consistent
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with our earlier studies using viral vectors, showing these
effects with a stable version of the protein is a very sub-
stantial step in the direction of human therapeutics.

Scale up and production of recombinant proteins in
yeast is well established, so this new irisin reagent will be
of great interest to the fields of diabetes, metabolism,
and exercise science. Exercise, of course, benefits other
disorders of the liver, heart, muscle, and brain. It will be
of great interest to apply these and other irisin prepa-
rations to models of other disease states. Identification
of the irisin receptor will also open new possibilities for
activation of these areas.
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Figure 1—Recombinant irisin regulates the thermogenic program in fat through ERK and p38 pathways. Recombinant irisin produced in
yeast is glycosylated and active. It induces the thermogenic gene program in 3T3-L1 cells and primary subcutaneous adipocytes. In vivo
treatments of this recombinant protein in mice show strong anti-obesity effects and improve systematic glucose homeostasis.
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